Accès direct au contenu

MATH

Version anglaise

aide

Accueil > Formations > Master MVA > Présentation des cours

Remote sensing data: from sensor to large-scale geospatial data exploitation

Titre en anglais:

  Ce cours est donné de préférence en français. Mais il peut être donné partiellement en anglais si une majorité des élèves le demande.

Intervenants : Gabriele Facciolo, Florence Tupin, Andres Almansa

Partenaires : Télécom ParisTech, ENS Paris-Saclay, Université Paris Descartes]

Objective of the course :

Provide a good understanding of earth observation systems and their mathematical modeling (optic and SAR satellite sensors), with a focus on data processing for elevation recovery (stereo-vision and SAR interferometry) and time series analysis. Handling of real images from space agencies or private providers through practical work sessions.  

Topics :

  • What can be seen from space?
  • Modeling an optical instrument
  • Modeling a Synthetic Aperture Radar instrument
  • How to recover 3D information with optic sensors?
  • Sub-pixel accuracy in stereo matching
  • How to recover 3D information with SAR sensors?
  • Processing and exploitation of SAR data
  • Time series analysis

Prerequisites :

Basics of linear algebra, calculus, statistics, basics of signal processing, basic programming

Organization of courses:

    • Place: Télécom ParisTech
    • 9x (lecture 2h, practical session 1h)
    • Usage of a personal laptop is encouraged for practical sessions

      Validation :

        • Reports and source code of practical sessions
        • Project on a remote sensing subject (report, code and oral presentation)

          References :

          Remote sensing imagery, ISTE Wiley, 2014, F. Tupin, JM Nicolas, J. Inglada

          Imagerie Spatiale Des principes d'acquisition au traitement des images optiques pour l'observation de la Terre. CNES, ONERA, IGN (2008), Cepaudes. ISBN 9782854288445.

          Imaging with Synthetic Aperture Radar. D. Massonet and J.C. Souyris. EPFL Press, 2008.

           Site web https://mvaisat.wp.imt.fr/