Accès direct au contenu

MATH

Version anglaise

aide

Accueil > Formations > Master MVA > Présentation des cours

Audio signal Analysis, Indexing and Transformations

Intervenants : Gaël Richard et  Roland Badeau (Télécom ParisTech)

Objectif du cours :

The aim of this course is to span several domains of audio signal analysis including audio indexing (or machine listening), high-resolution audio spectral analysis, audio source separation, and audio transformations (3D sound rendering, sound effects and sound modifications).

Thèmes abordés :

  • Audio Indexing (machine Listening): audio signal analysis for content-based information retrieval  (automatic music genre recognition, automatic musical instrument identification, tempo or downbeat estimation,...).

  • Audio Transformations (3D rendering, sound effects, sound modifications): Physical and perceptual approaches (binaural/transaural techniques, head-related transfer functions, wave field synthesis,..). Digital sound effects (flanger, phaser, distortion, artificial reverberation,..). Timbral, scale and pitch modifications.
  • Audio Source Separation: Audio demixing, linear and convolutive mixing models, underdetermined models, sparse models, DUET.
  • High resolution audio spectral analysis: Sinusoidal models, beyond Fourier analysis, spectral MUSIC, ESPRIT

    Pré-requis :

    Basics of signal processing..

    Organisation des séances :

    • 13,5 h theoretical lectures
    • 10,5 h practical sessions (TP) in Matlab (or Python if preferred)
    • Lectures are planned to be in French but slides will be in English

    Mode de validation


    Papers reading/analysis with written report and oral presentation.

      Références :

      • Y. Grenier, R. Badeau, G. Richard « Polycopiés de cours sur le traitement du signal audio (in French) », Télécom ParisTech.
      • M. Mueller, D. Ellis, A. Klapuri, G. Richard, Signal Processing for Music Analysis", IEEE Journ. on Selected Topics in Sig. Proc., October 2011..

      Plus d'information...